Generic Dot Products

Sean Seefried
Dot products

Take two vectors of length \(n \)

\[
\mathbf{u} = (u_1, \ldots, u_n) \quad \quad \quad \mathbf{v} = (v_1, \ldots, v_n)
\]

Dot product is

\[
\mathbf{u} \cdot \mathbf{v} = u_1v_1 + \ldots + u_nv_n
\]

or

\[
\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_iv_i
\]
dot :: Num a => [a] -> [a] -> a
dot xs ys = foldl (+) 0 (zipWith (*) xs ys)
Works for lists of different lengths because

\[\text{dot} :: \text{Num } a \Rightarrow [a] \rightarrow [a] \rightarrow a \]
\[\text{dot } xs \ ys = \text{foldl} \ (+) \ 0 \ (\text{zipWith} \ (*) \ xs \ ys) \]
What about trees?

• What does dot product even mean on trees?

• What conditions need to hold?
data Tree a = Leaf a | Branch (Tree a) (Tree a)
data Tree a = Leaf a | Branch (Tree a) (Tree a)
\[
\text{data Tree } a = \text{ Leaf } a \mid \text{ Branch (Tree } a\text{) (Tree } a\text{)}
\]

\[
1 \times 4 + 2 \times 5 + 3 \times 6 = 32
\]
zipWith for Trees
zipWith for Trees

\[
\text{zipWithT } f \ (\text{Leaf } a) \ (\text{Leaf } b) = \text{Leaf } (f \ a \ b)
\]
zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s')
 (zipWithT f t t')
zipWithT f (Leaf a) (Leaf b) = Leaf (f a b)
zipWithT f (Branch s t) (Branch s' t') = Branch (zipWithT f s s') (zipWithT f t t')
zipWithT f (Leaf a) (Branch s' t') = {- ? -} undefined
zipWith for Trees

\[
\begin{align*}
\text{zipWithT } f \ (\text{Leaf } a) \ (\text{Leaf } b) & = \text{Leaf } (f \ a \ b) \\
\text{zipWithT } f \ (\text{Branch } s \ t) \ (\text{Branch } s' \ t') & = \text{Branch } (\text{zipWithT } f \ s \ s') \\
& \quad \text{undefined} \\
\text{zipWithT } f \ (\text{Leaf } a) \ (\text{Branch } s' \ t') & = \{ - \ ? \ - \} \ \text{undefined} \\
\text{zipWithT } f \ (\text{Branch } s \ t) \ (\text{Leaf } b) & = \{ - \ ? \ - \} \ \text{undefined}
\end{align*}
\]
Shapes

- Encode *shape* of data structure with GADTs
- Type system ensures that only values of same shape can be zipWithed together
data Z

data S n

infixr 5 `Cons`
data Vec n a where
 Nil :: Vec Z a
 Cons :: a -> Vec n a -> Vec (S n) a
Total functions

headVec :: Vec (S n) a -> a
headVec (Cons x _) = x

tailVec :: Vec (S n) a -> Vec n a
tailVec (Cons _ xs) = xs

You just can’t write the Nil case!
zipWithV :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
zipWithV f Nil Nil = Nil
zipWithV f (Cons x xs) (Cons y ys) = f x y
 `Cons`
 zipWithV f xs ys

Annoying thing: GHC won’t disallow this

zipWithV f (Cons x xs) Nil = {- ? -} undefined

...but there is no way to define this as anything other than undefined (⊥)
Trees with shapes

data Tree sh a where
 Leaf :: a -> Tree () a
 Branch :: Tree m a -> Tree n a -> Tree (m,n) a

Example

> :t Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
(Num t) => Tree ((), ((), ())) t
zipWithT

\[\text{zipWithT} :: (a \to b \to c) \to \text{Tree} \; \text{sh} \; a \to \text{Tree} \; \text{sh} \; b \to \text{Tree} \; \text{sh} \; c \]
\[\text{zipWithT} \; f \; \text{(Leaf} \; a) \; \text{(Leaf} \; b) \; = \; \text{Leaf} \; (f \; a \; b) \]
\[\text{zipWithT} \; f \; \text{(Branch} \; s \; t) \; \text{(Branch} \; s' \; t') \; = \; \text{Branch} \; (\text{zipWithT} \; f \; s \; s') \; (\text{zipWithT} \; f \; t \; t') \]

Again, type checker won’t complain about other cases but they will never be executed
Dot product on trees

foldlT :: (a -> b -> a) -> a -> Tree sh b -> a
foldlT f z (Leaf a) = f z a
foldlT f z (Branch s t) = foldlT f (foldlT f z s) t

dotT :: Num a => Tree sh a -> Tree sh a -> a
dotT t1 t2 = foldlT (+) 0 (zipWithT (*) t1 t2)
Let’s generalise!
Generalising

zipWith is actually liftA2

\[
\text{liftA2} \;::\; \text{Applicative } f \Rightarrow (a \rightarrow b \rightarrow c) \rightarrow f\; a \rightarrow f\; b \rightarrow f\; c
\]

Specialised to lists

\[
\text{liftA2} \;::\; (a \rightarrow b \rightarrow c) \rightarrow [a] \rightarrow [b] \rightarrow [c]
\]
What is Applicative?

• Brain-child of Conor McBride and Ross Paterson.

• Applicative *lifts* a value into a fragment of a larger domain

• Applicative allows you to apply values from this domain to each other.

• All Monads are Applicatives. Not all Applicatives are Monads.
Applicative

class Functor f => Applicative f where
 pure :: a -> f a
 (<>*) :: f (a -> b) -> f a -> f b

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = pure f <*> a <*> b
liftA2 (*) on lists

pure (*) <> [1,2,3] <> [4,5,6]
liftA2 (*) on lists

\[\left(\ast, \ast, \ast\right) \leftrightarrow \left[1, 2, 3\right] \leftrightarrow \left[4, 5, 6\right]\]
liftA2 (*) on lists

[(1*),(2*),(3*)] <-> [4,5,6]
liftA2 (*) on lists

[4,10,18]
Okay, I lied

> liftA2 (*) [1,2,3] [4,5,6]
[4,5,6,8,10,12,12,15,18]

Applicative on [] is actually list monad

> do { x <- [1,2,3]; y <- [4,5,6]; return (x * y) }
[4,5,6,8,10,12,12,15,18]

> [x * y | x <- [1,2,3], y <- [4,5,6]]
[4,5,6,8,10,12,12,15,18]
ZipList

newtype ZipList a = ZipList { getZipList :: [a] }

> liftA2 (*) (ZipList [1,2,3]) (ZipList [4,5,6])
 ZipList [4,10,18]
ZipList is unsatisfying

instance Applicative ZipList where
 pure x = ZipList (repeat x)
 ZipList fs <*> ZipList xs = ZipList (zipWith id fs xs)

pure returns an infinite list
What we had before was really...

[(*) ,(*) ,(*) ,...] <*> [1,2,3] <*> [4,5,6]

Wouldn’t it be nice if it was just the right length?
Applicative on Vec

You need *two* instances. One for each constructor.

```haskell
instance Applicative (Vec Z) where
  pure _ = Nil
  Nil <*> Nil = Nil

instance Applicative (Vec n) => Applicative (Vec (S n)) where
  pure a = a `Cons` pure a
  (fa `Cons` fas) <*> (a `Cons` as) = fa a `Cons` (fas <*> as)
```

Second instance is like *inductive case in structural induction proof*. Builds up infinite family of Applicative instances for all shapes.
pure produces a vector of exactly the right length!

Better still, the type checker complains when you try to put patterns in the wrong instances!

instance Applicative (Vec Z) where
 pure _ = Nil
 Nil <*> Nil = Nil
 (fa `Cons` fas) <*> (a `Cons` as) = fa a `Cons` (fas <*> as)

Couldn't match expected type `Z' against inferred type `S n'
 Expected type: Vec Z b
 Inferred type: Vec (S n) b
 In the expression: fa a `Cons` (fas <*> as)
Drum roll please...
Generic dot product

dot :: (Num a, Foldable f, Applicative f) => f a -> f a -> a
dot x y = foldl (+) 0 (liftA2 (*) x y)

foldl is from Foldable type class not Prelude!

class Foldable t where
 foldl :: (a -> b -> a) -> a -> t b -> a
For a data structure T

IF you can define Foldable and Applicative instances

THEN you have dot product!
Applicative on Trees

instance Applicative (Tree ()) where
 pure a = Leaf a
 Leaf fa <*> Leaf a = Leaf (fa a)

instance (Applicative (Tree m), Applicative (Tree n)) =>
 Applicative (Tree (m,n)) where
 pure a = Branch (pure a) (pure a)
 (Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)
Applicative on shapeless Trees. Yuck.

instance Applicative Tree where
 pure a = ??? -- Leaf or Branch?

Leaf fa <*> Leaf a = Leaf (fa a)
(Branch fs ft) <*> (Branch s t) = Branch (fs <*> s) (ft <*> t)
(Leaf fa) <*> (Branch s t) = ???
Branch fs ft <*> Leaf a = ???

It’s beautiful that insisting on same shape leads to the elegant instance!
“The reward is that the resulting designs are simple and
general, and sometimes have the feel of profound *inevitability*—
as something beautiful we have discovered, rather than
something functional we have crafted. A gift from the gods.”

— Conal Elliott in *Denotational design with type class morphisms*
Let’s see liftA2 (*) on Trees
liftA2 (*) on Trees

```
pure (*)  <*>  1  <*>  4
  2   3  5   6
```
liftA2 (*) on Trees

\begin{align*}
\begin{array}{c}
\ast \ast \\
\ast \\
\ast \\
\end{array} & \quad \begin{array}{c}
\ast \\
\ast \\
\ast \\
\end{array} & \quad \begin{array}{c}
\ast \\
\ast \\
\ast \\
\end{array} & \quad \begin{array}{c}
\ast \\
\ast \\
\ast \\
\end{array} \\
\ast & \quad \ast & \quad \ast & \quad \ast
\end{array}
\end{align*}
liftA2 (*) on Trees

```
(1*)  <>  4
  / \
(2*) (3*) 5 6
```

Monday, 21 November 11
liftA2 (*) on Trees
> pure 1 :: Tree ((), (((),())), Int
 Branch (Leaf 1) (Branch (Leaf 1) (Leaf 1))

> liftA2 (*) t1 t2
 Branch (Leaf 4) (Branch (Leaf 10) (Leaf 18))

> let t1 = Branch (Leaf 1) (Branch (Leaf 2) (Leaf 3))
> let t2 = Branch (Leaf 4) (Branch (Leaf 5) (Leaf 6))
> dot t1 t2
32
In the next episode...

Generic matrix multiplication
Teaser

For regular matrices dimensions of input matrices
determine dimensions of output matrix

\[m \times n \times n \times p = m \times p \]

For generic matrices type and shape of input matrices
determine type and shape of output matrix

\[\text{Tree } s \times \text{Vec } n \times \text{Vec } n \times \text{Tree } t = \text{Tree } s \times \text{Tree } t \]
Why am I doing this?

• Generalise matrix multiplication to data structures other than lists or arrays
• Develop a generic implementation using
 • Reusable algebraic machinery.
 • i.e. Functor, Applicative, Foldable, Traversable
• Derive work efficient parallel algorithm.